LED Display Backlighting – Monitor Applications using 6-lead MULTILED®
Application Note

Abstract
This application note describes two reference designs for LCD backlighting using the 6-lead MULTILED® LRTB G6SG. The feasibility of the designs is shown on two LCD sizes of 19" and 24" with a typical brightness of 250cd/m² required for office applications.

The uniform illumination of very large screens used in LCD televisions which require a typical brightness of 350-500cd/m² is described in a separate application note "LED Display Backlighting – Large Screen and TV Application".

This document builds upon the fundamental concepts of LED backlighting described in the application note "LEDs, New Light Sources for Display Backlighting".

Introduction
The continual increase in LED brightness in recent years has opened up new market segments and application areas. RGB SMD-LEDs have become particularly important for the LCD display market and offer several advantages over existing CCFL (cold cathode fluorescent lamp) technology for use in backlight units (BLUs). The increased color gamut (beyond the NTSC standard and 50% larger than CCFL, as shown in Figure 1) and the compensation of blurring effects by means of pulsed LEDs provide exceptional image quality.

The color point can be set to any location within the color triangle, and can be color stabilized and dimmed with the appropriate LED driver circuitry.
In addition, LED technology provides a high level of reliability with a lifetime of over 50,000 hours and the components are free of hazardous materials such as mercury or lead.
If very fast switching LCDs become available in the future, the color filter in LCD displays can be entirely eliminated, and the color display can be achieved directly by means of "sequential color".

Figure 1: Color gamut of LED and CCFL compared to NTSC standard (NTSC: National Television System Committee)
6-lead MULTILED® LRTB G6SG

The 6-lead MULTILED® LRTB G6SG (see Figure 2) is used for both designs. This device contains three chips for the colors red (R), true-green (G) and blue (B) using our highly efficient Thinfilm technology. This LED is distinguished by the high optical efficiency of the chips used and the increased lifetime (> 50,000h) due to the silicon packaging, allowing the LED to be used in demanding backlighting applications.

When all three chips of this LED are driven simultaneously with the appropriate RGB intensities, a white light is produced. Depending on requirements, the resulting color coordinates can be positioned anywhere within the color triangle.

Details concerning the optical characteristics and the current performance of the LED can be found in the corresponding data sheet.

DESIGN 1: Example of indirect LED backlighting for a 19-inch LCD Monitor

A commercially available 19-inch TFT monitor (see Figure 3) was obtained and modified with LED backlighting. Only the light source was modified; the rest of the design (housing, light guide, optical films etc.) remained unchanged.

The two cold cathode fluorescent lamps (CCFL) located on the long sides of the light guide were removed and were each replaced with a strip of IMS-PCB (insulated metal substrate) containing 77 LEDs. For the entire backlight, 154 LEDs were used, with a pitch of 5mm (see Figures 4 & 5).
Figure 5: Upper left corner of the LED backlight in operation

In future a less number of LEDs will be needed due to the continuous increasing brightness of the semiconductor chip. As a consequence of the light guide approach, the backlight can be made very thin (approx. 10mm).

The LED primary colors vary in intensity depending on the desired color coordinates for the RGB mixture. The ratio of red, green and blue must be specifically adjusted according to the type of LEDs used and their brightness and wavelength groups.

In this specific example the chip brightness was within the level of 400-502mcd for red, 900-1120mcd for green and 140-180mcd for blue, measured at 20mA according to the floating bins of OSRAM OS. For white (x=0.33 & y=0.33), the intensity ratios of R 30%, G 60% and B 10% should be employed. The original backlight was set to color coordinates of x=0.30 & y=0.34 which resulted in ratios of R 25%, G 67% and B 8%.

For the LEDs, this results in red with 460mcd (at 20mA, 2V), green with 1230mcd (at 30mA, 3V) and blue with 150mcd (at 20mA, 3V). The power consumption per LED is around 190mW (30 W for all LEDs) and provides a luminous flux of about 5.5lm for the backlight, leading to 250nits at the LCD. This value was verified by measurements on the modified monitor (see Figure 6).

Figure 6: Display with conventional backlighting (left) and with LED backlighting (right) – the strengths lie in the red and green areas

For this modification, the PCB strips were mounted in the existing housing. In order to guarantee stable continuous operation of the LEDs, thermal dissipation must also be taken into account. As seen in our thermal simulation (Figure 7) of the LED setup and verified by the modified backlight the heating is below the admissible max. junction temperature of 125°C.

In this case, passive cooling by means of ventilation slots in the housing and the mounting of the IMS-PCBs on thin heat sinks is sufficient.

Figure 7: Thermal simulation map of 19” LED setup
For each PCB strip, a group of 11 red, 7 green and 7 blue LEDs were driven in series, so that a supply voltage of 24V could be used. Appropriate series resistors were used to limit the maximum current to the LEDs; the fine adjustment of the RGB ratios was accomplished by means of PWM (pulse width modulation).

DESIGN 2: Example of direct LED backlighting for a 24-inch LCD monitor

A commercially available 24-inch monitor was modified with a direct LED backlight, because for diagonals of 24 inches and more, direct CCFL backlighting is predominantly used as well. A direct setup has the advantage that the backlight can be relatively easily scaled up or down, corresponding to the LCD size and the brightness requirements, due to the unnecessary light guide.

The schematic construction is shown in Figure 8. The LEDs are evenly distributed within a reflector box (backlight unit = BLU) which is coated with a white reflective material. The required optical films are also added to the BLU, followed by the LCD itself.

Specifically, the backlight consisted of 468 LEDs in a 26 x 18 matrix within an area of 530mm x 350mm. The LEDs were arranged on IMS-PCBs in 26 vertical strips, with 18 LEDs per strip. The LEDs for each strip were connected in series and the maximum current for each color was limited by appropriate series resistors. The strips were connected in parallel – this has the advantage that in spite of the high LED count, the required supply voltage can be kept low. The LEDs were positioned with a spacing of 20mm. To further homogenize the color uniformity, especially at the borders of the backlight, it is possible to rotate e.g. every other LED by 180°.

![Figure 8: Schematic construction of direct backlighting with LEDs](image-url)
As already mentioned, an advantage is the scalability of this arrangement – as long as the number of LEDs for a given area remains constant, this approach can also be used for smaller or larger displays (see Table 1).

<table>
<thead>
<tr>
<th>BLU size</th>
<th>Number of 6-lead MultiTOPLEDs®</th>
</tr>
</thead>
<tbody>
<tr>
<td>20”</td>
<td>325</td>
</tr>
<tr>
<td>21”</td>
<td>358</td>
</tr>
<tr>
<td>24”</td>
<td>468</td>
</tr>
<tr>
<td>26”</td>
<td>550</td>
</tr>
<tr>
<td>27”</td>
<td>593</td>
</tr>
</tbody>
</table>

Table 1: Estimation of LED count for various display sizes (250 nits on LCD)

Increased brightness (TV LCDs typically possess a brightness of 350 – 500nits) can be achieved either by a higher LED count or increased LED performance or a combination of both measures. There is actually no limitation in size and brightness, as long as one is able to drive the necessary amount of LEDs.

An additional advantage is the equal temperature distribution of the backlight (Figure 9) as a result of the equal spacing of the LEDs.

In order to assure homogeneous illumination of the display, the standard optical films in the monitor were not suitable. In this case, the LEDs would create noticeable spots of light on the backlight. Therefore, a special diffractive diffuser was used which creates a satisfactory homogenization of the light at a distance of 20mm from the LEDs. This optical film has an additional advantage: it does not only replace the diffuser, but also offers increased brightness by reducing the emission angle of the backlight. Thus, the diffractive diffuser effectively reduces the number of boundary layers required and further increases the efficiency. The excellent transmission of around 90% also contributes to the light emitting efficiency (see Figure 10).

Figure 9: LED temperature distribution

As seen in the simulation and by the mockup as well, passive cooling by means of ventilation slots in the housing and the mounting on the IMS-PCBs which is used as heat sink is sufficient to keep the temperature below the admissible junction temperature.

The diffractive diffuser can be obtained under the name LSD (Light Shaping Diffuser) from Physical Optics Corporation (www.poc.com) in various formats (dimensions, thickness, and transmission characteristics).

Figure 10: Transmission of various diffuser films (Source: POC)
For the 24 inch backlight in our example application, an LSD 80° and a DBEF-D were used. With the appropriate LED supply current, the color mixing of the primary colors from the LEDs was adjusted to white so that a contribution of about 4.5lm at 60mW per LED was assumed (the total LED power amounts to about 75W), resulting in 250nits on the LCD. Details of the mechanical setup are shown in the following images (Figures 10a, b & c).

Summary

The 6-lead MULTILED® is ideally suited for backlighting in LCD monitors. Beside the ecological and economical advantages the LED backlight provides an exceptional image quality on LCDs with a higher color gamut and compensated blurring effects. Either indirect or direct backlighting can be used. Direct backlighting can be scaled for various display sizes and brightnesses; the light guide solution permits a very thin design.

Driving and switching of LEDs in an LED BLU is also very flexible, allowing numerous approaches such as pulse operation, unlimited dimming by PWM, brightness and color control as well as sequential color operation to eliminate color filters in the LCD.

The 6-lead MULTILED® is available in the latest generation of Thinfilm technology which typically delivers around 6lm at 200mW (30lm/W) at the white point (x=0.33; y=0.33); this value will significantly increase in the near future (38lm/W by the end of 2005).
Links to manufacturers:

http://www.poc.com/ (light shaping diffuser from POC)
http://www.kimoto.ch/ (diffuser and reflective film from Kimoto)

Author: Josef Hüttn

ABOUT OSRAM OPTO SEMICONDUCTORS

OSRAM, with its headquarters in Munich, is one of the two leading lighting manufacturers in the world. Its subsidiary, OSRAM Opto Semiconductors GmbH in Regensburg (Germany), offers its customers solutions based on semiconductor technology for lighting, sensor and visualization applications. OSRAM Opto Semiconductors has production sites in Regensburg (Germany) and Penang (Malaysia). Its headquarters for North America is in Sunnyvale (USA). Its headquarters for the Asia region is in Hong Kong. OSRAM Opto Semiconductors also has sales offices throughout the world. For more information go to www.osram-os.com.

DISCLAIMER

PLEASE CAREFULLY READ THE BELOW TERMS AND CONDITIONS BEFORE USING THE INFORMATION. IF YOU DO NOT AGREE WITH ANY OF THESE TERMS AND CONDITIONS, DO NOT USE THE INFORMATION.

The Information shown in this document was produced with due care, but is provided by OSRAM Opto Semiconductors GmbH “as is” and without OSRAM Opto Semiconductors GmbH assuming, express or implied, any warranty or liability whatsoever, including, but not limited to the warranties of correctness, completeness, merchantability, fitness for a particular purpose, title or non-infringement. In no event shall OSRAM Opto Semiconductors GmbH be liable - regardless of the legal theory - for any direct, indirect, special, incidental, exemplary, consequential, or punitive damages related to the use of the Information. This limitation shall apply even if OSRAM Opto Semiconductors GmbH has been advised of possible damages. As some jurisdictions do not allow exclusion of certain warranties or limitations of liability, the above limitations or exclusions may not apply. The liability of OSRAM Opto Semiconductors GmbH would in such case be limited to the greatest extent permitted by law.

OSRAM Opto Semiconductors GmbH may change the Information at anytime without notice to user and is not obligated to provide any maintenance or support related to the Information. The Information is based on specific Conditions and, therefore, alterations to the Information cannot be excluded.

Any rights not expressly granted herein are reserved. Except for the right to use the Information included in this document, no other rights are granted nor shall any obligation be implied requiring the grant of further rights. Any and all rights or licenses to patents or patent applications are expressly excluded.

Reproduction, transfer, distribution or storage of part or all of the contents of this document in any form without the prior written permission of OSRAM Opto Semiconductors GmbH is prohibited except in accordance with applicable mandatory law.